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We have studied the soliton propagation through a segment containing random pointlike scatterers. In the
limit of small concentration of scatterers when the mean distance between the scatterers is larger than the
soliton width, a method has been developed for obtaining the statistical characteristics of the soliton transmis-
sion through the segment. The method is applicable for any classical particle traversing through a disordered
segment with the given velocity transformation after each act of scattering. In the case of weak scattering and
relatively short disordered segment the transmission time delay of a fast soliton is mostly determined by the
shifts of the soliton center after each act of scattering. For sufficiently long segments the main contribution to
the delay is due to the shifts of the amplitude and velocity of a fast soliton after each scatterer. Corresponding
crossover lengths for both cases of light and heavy solitons have been obtained. We have also calculated the
exact probability density function of the soliton transmission time delay for a sufficiently long segment. In the
case of weak identical scatterers the latter is a universal function which depends on a sole parameter—the mean
number of scatterers in a segment.
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I. INTRODUCTION

The interplay between disorder and nonlinearity has at-
tracted the attention of physicists for more than 20 years
�1,2�. The latest advancements in experimental techniques
and computational facilities have brought about a new peak
of interest in the problem and already led to a wider under-
standing of the corresponding phenomena �3�. Physical prop-
erties of disordered nonlinear systems reveal much more sen-
sitivity to the details of the formulation of the problem than
their linear counterparts. For example, in nonlinear systems
there exist three different transmission regimes: besides the
exponential decrease in the transmission coefficient with the
length of the disordered segment �4,5� �which is the sole
possibility in the linear case�, power-law decrease can occur
�6�, and—in the case of sufficiently strong nonlinearity—the
transmission coefficient may not even decrease at all �4,5�.

One of the main concepts in the theory of nonlinear waves
is a concept of a soliton �7–9�—a particlelike stable nonlin-
ear excitation observed in many nonlinear physical systems.
A particular example revealing the reciprocal action between
the nonlinearity and disorder is a soliton propagation in
random media. One can observe here an entire plethora of
problems which differ from each other by �i� the type of
nonlinearity �e.g., nonlinear Schrödinger equation �NLSE�
�4,10–16�, sine-Gordon equation �17–19�, and the so-called
�4 system �17,20,21��, �ii� the way in which random-
ness enters the system �e.g., in the random potential form
�4,10,13–18,20�, dispersive terms �11�, nonlinear terms �15�,
and external force �19��, �iii� random structure of corre-
sponding coefficients �e.g., randomly distributed localized
impurities �4,10,17,18,20� or finite-range inhomogeneities
�13–15,19,21��, and �iv� the statistics of the disorder poten-
tial such as, e.g., white or colored Gaussian potential �16� or
random stepwise process �12�. A noticeable share of the

above mentioned papers is devoted to the soliton transmis-
sion through a one-dimensional �1D� disordered segment in
the framework of NLSE. The latter is a ubiquitous nonlinear
model appearing in many areas of contemporary physics. In
the condensed-matter physics NLSE occurs, for example, in
the description of weakly nonlinear magnetization dynamics
in ferromagnets with the easy-axis-type anisotropy �22�. It is
also one of the main models in the nonlinear fiber optics and
the nonlinear fiber arrays �23–25�. A prominent feature of the
NLSE model is that, in homogeneous �ordered� systems, this
equation is completely integrable and possesses stable robust
soliton solutions �7,8�.

Among the most common and widely explored sources of
disorder are randomly distributed pointlike scatterers which
emulate the random short-scale imperfections of a media
�9,10,14�. When the concentration of scatterers is small, that
is to say the mean distance between scatterers is much larger
than the size of a soliton �i.e., the case of “sparse scatterers”�,
the transmission of the soliton through a disordered segment
can be considered as a sequence of individual events of pass-
ing through a single scatterer. After each act of scattering, the
transmitted soliton acquires an abrupt shift of its position as
well as a change in both its energy and velocity �i.e., the
scattering is generally inelastic�. These changes influence the
transmission characteristics of the soliton traversing through
the total length of a sample, e.g., the time needed for the
soliton to pass the entire segment �we call it a “transmission
time” here�. Assuming that the scattering is weak one can
postulate that a soliton passing through a single scatterer
experiences only a slight change in its parameters, with the
measure of this “slightness” being the intensity of a scatterer.
A single act of such a scattering was treated in detail in �10�
within the framework of perturbation theory �9� �see also
Ref. �13� where it was considered within another approach�.
When the perturbation method is applied, the resulting map-
ping mechanism for the soliton parameters is often called an
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“equivalent particle approach” due to the similarity of the
resulting effect with the classical particle scattering �14�.

In this paper we study the statistics of the soliton trans-
mission time T through a 1D disordered segment in the
framework of NLSE. More precisely, we address the delay
for the transmission time of an incident soliton, �T, occur-
ring due to the presence of sparse random scatterers. Note
that often in the context of nonlinear optics the role of time is
played by the spatial coordinate along the propagation of the
optical beam, so for the so-called spatial solitons �23� this
delay, �T, should be endowed with a different physical
meaning.

As mentioned above, the scattering itself is considered to
be weak and a perturbative approach can be applied for the
description of the soliton dynamics. In the first order with
respect to weak scattering intensity �, the time delay is re-
lated only to the shift in the soliton position after each scat-
terer. The corresponding total delay �T is then proportional
to the number of scatterers within the segment �and hence
the segment length L�. On the other hand, the second-order
effects, i.e., those of the order of �2, bring about the change
in the soliton velocity, and their corresponding contribution
is proportional to L2. Therefore, in the case of sufficiently
long segment �the relevant inequalities will be given in the
text�, the latter contribution dominates and the overall trans-
mission delay should be calculated using the second-order
approximation with respect to the scatterer intensity.

We develop here a simple yet robust mathematical for-
malism allowing one to obtain the mean value ��T� and
variance �2= ���T�2�− ���T��2 of the fluctuating transmis-
sion time delay. Some preliminary results concerning these
first two moments have been published in �26�. But in the
current paper not only we provide a detailed description of
the method for the moments but also we present the exact
probability density ���T� and the probability P��T��T0�
that the delay does not exceed a given value �T0. Such an
approach has a certain merit on its own and can be used in
the variety of similar random transmission problems where
the velocity mapping between the two adjacent segments is
given. It is pertinent to stress that in the current paper we
consider the case of weak intensities of local inhomogene-
ities satisfying the inequality �2n��2L�1, where n is the
typical number of scatterers. Thus, the parameters of the
transmitting soliton �i.e., its amplitude and velocity� change
weakly, with the measure of this weakness being the afore-
mentioned parameter �2n. This case is somewhat opposite to
that considered in Refs. �13,14�, where the limit �2L→	 was
implied, so that the limiting values of the soliton parameters
differ significantly from their initial values.

The structure of the paper is as follows. We start with a
brief reminder of the basic properties of a NLSE soliton,
consider soliton scattering on a single defect, and recall the
known expressions for the energy and the number of emitted
quasiparticles �Sec. II A� used to obtain the formulas for ve-
locity transformation �Sec. II B�. Our statistical model of
randomly placed scatterers is introduced in Sec. III, where
we describe the exact �nonperturbative� method for the cal-
culation of various ensemble averages. This method is then
applied in Sec. IV to the problem of soliton transmission

through a disordered segment: we analyze the dynamics of
the soliton passing trough the segment �Sec. IV A� and ob-
tain general expressions for the mean transmission time de-
lay and its variance �Sec. IV B�. The limiting case of weak
scatterers is the subject of Sec. IV C: here, we obtain simple
explicit formulas for the mean value and variance of the
transmission time delay for both light and heavy solitons and
estimate the length of the segment where second-order con-
tribution dominates over the first-order one. The statistical
properties of the delay time are studied in Sec. V. In its first
part �Sec. V A� we provide general formulas for various av-
erages. The main result of this section is an explicit formula
for the probability density function of transmission time de-
lay obtained in Sec. V B. In Sec. V C we present the prob-
ability that delay does not exceed a given value. The results
obtained are summarized in Conclusion. Appendixes A–D
contain the technical details of the calculations.

II. SOLITON TRANSMISSION THROUGH A SINGLE
WEAK SCATTERER

A. General remarks

In this section we briefly recall some known results con-
cerning the NLSE soliton transmission through the single
weak pointlike scatterer. The corresponding perturbed NLSE
in the normalized dimensionless units reads �10�

iut + uxx + 2�u�2u = u�
�x�, − 	 � x � 	 . �1�

Here, u�x , t� is the complex field variable and the subscripts
denote the partial derivatives with respect to time t and spa-
tial coordinate x. The right-hand side �r.h.s.� of this equation
describes the influence of a single point scatterer with the
intensity � placed at the origin. Let us mention again that in
some systems �like, e.g., for the spatial solitons in planar
waveguides� the physical meaning of independent variables t
and x may be different. Also the meaning of the field variable
u depends on the nature of the problem in hand: it can de-
note, e.g., the deviation of the magnetization from the “easy”
axis in ferromagnets or the envelope of the electromagnetic
wave in optical fibers etc.

The unperturbed NLSE, i.e., when we set �=0 in Eq. �1�,
is completely integrable and possesses an infinite set of inte-
grals of motion �7�, including total energy E and the total
number of bound waves �quasiparticles� N. The simplest
one-soliton solution of NLSE reads as �8�

us�x,t� = ia

exp	− i
vx

2
+ �v2

4
− a2�t + �0
�

cosh�a�x + vt� − �1�
�2�

and depends on four real parameters: a, v, �0, �1. We
choose the soliton amplitude a �which also characterizes
its spatial size� and velocity v to be positive. Such a selec-
tion corresponds to a soliton propagating in the negative di-
rection of the x axis. Assuming the solution in the form of
a single-soliton ansatz �Eq. �2��, the number of quasiparticles
Ns bounded in soliton �2� and the soliton energy Es are
given by
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Ns = 2a , �3�

Es =
av2

2
−

2a3

3
. �4�

In what follows we distinguish between the cases of
“light” and “heavy” solitons. The particular type of the soli-
ton is governed by the dimensionless parameter

� =
2a

v
. �5�

We name a soliton the amplitude of which is mush less than
its velocity, ��1, a light soliton. Correspondingly heavy
solitons are those for which the inverse inequality is satis-
fied, �
1. This difference can be seen in Fig. 1: the region
marked as �a� corresponds to the light solitons while regions
�b� and �c� correspond to the heavy ones. The properties of
light solitons are very close to those of a linear wave packet:
almost all of its �positive� energy is contained in the first
term in the r.h.s. of Eq. �4� �i.e., in its kinetic energy�. On the
contrary, a heavy soliton behaves mostly like a classical par-
ticle and its �negative� energy is concentrated mainly in the
second term in the r.h.s. of Eq. �4�. It means that the energy
of the nonlinear interaction of the quasiparticles bound in the
heavy soliton significantly exceeds their kinetic energy, and
the opposite is true for the light solitons.

Consider now a soliton incident at t→−	 from the right
�i.e., from x=+	� and characterized by the amplitude a, ve-
locity v �or equivalently by the number of quasiparticles Ns
and energy Es �4��, and also by the phases �0,1. As noted
above, in this paper we will deal with the case of weak
scatterers where the dimensionless scatterer intensity is
small, and the ratio � /v�1 is the main small parameter of
the problem. Then one can resort to perturbation theory
�9,27� to describe the change in the soliton parameters after
each act of scattering. The exhaustive perturbative study of
the soliton transmission over a single 
 scatterer was carried
out in Ref. �10�. It was shown that in the case of attractive
scatterer, ��0, the soliton becomes trapped in an effective

potential well created by such an impurity and then experi-
ences oscillatory motion in the vicinity of the scatterer. In the
case of sufficiently strong repulsive scatterer, when the two
inequalities ��0 and v�2�� are fulfilled, the soliton is
always reflected by the scatterer �the region of parameters
corresponds to the upper right sector in Fig. 1�. The soliton
can pass through the scatterer only in the case of compara-
tively weak repulsive interaction, and in our current study we
assume that the following inequalities hold:

0 � 2�� � v . �6�

We distinguish two cases: �i� a fast soliton, with param-
eters falling into the two marked regions, �a� and �b� in Fig.
1, where the strong version of inequality �6� is valid,

�� � v , �7�

and �ii� a slow soliton, where together with Eq. �6� we have
���v �region �c� showed schematically by dashed lines in
Fig. 1�. As one can easily see, in the case of weak scatterers,
��1, the light soliton is always fast, while the heavy soliton
can be either fast �region �b�� or slow �region �c��.

In the first order with respect to dimensionless scatterer
intensity �, at t→+	 the amplitude, velocity, the number of
particles, and energy of the soliton remain unchanged. The
only changes are in the phases: �0,1� =�0,1+O���. Here and
further, the primes will denote soliton parameters after scat-
tering. These changes can be readily calculated �10� and as a
result the position of the soliton center is asymptotically
shifted back as compared to the unperturbed propagation of
the soliton with the unchanged constant velocity v. The over-
all value of the backward coordinate shift �in the adiabatic
approximation� is given by

d � 2�/v2. �8�

For a slow soliton the additional shift of soliton position d is
on the order of its width l0�1 /a, and for a fast soliton this
shift is d� l0.

Since in the first order in � �adiabatic approximation� the
amplitude a and the velocity v of the soliton do not change,
its energy Es and the number of bound particles Ns do not
change either �see Eq. �4�� and there is no emission of qua-
siparticles from the soliton. But in the second order in � �or
rather � /v as will be seen later�, the solution at t→+	 rep-
resents the transmitted soliton together with a number of
quasilinear excitations carrying the number of waves N and
energy E. The amplitude and velocity of a scattered soliton
do change now as follows:

a� = a + O��2/v2�, v� = v + O��2/v2� ,

and so do the number of bound quasiparticles, Ns�=Ns
+O��2 /v2�, and the energy, Es�=Es+O��2 /v2�. All the pa-
rameters describing the incident and scattered solutions are
related via the conservation laws for total number of quasi-
particles and the total energy,

FIG. 1. �Color online� The phase diagram indicating the differ-
ent propagation regimes of soliton. The shadowed regions �a� and
�b� correspond to fast light and fast heavy solitons correspondingly,
while the dashed region �c� pertains to heavy slow solitons. The
upper hyperbola marks the boundary of the region of parameters
where a soliton can pass over the impurity �see Eq. �6��.
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Es = Es� + E ,

Ns = Ns� + N . �9�

In the case of slow soliton the spectra of emitted quasi-
particles can only be obtained numerically. However, it ap-
pears that such a limit �when the position shift is on the order
of the soliton width� is not a physical one. On the contrary,
the case of fast soliton admits a detailed analytical descrip-
tion. Here, the problem of emission of linear excitations can
be solved perturbatively �9,13�. In the second order of the
perturbation theory the number of emitted quasiparticles and
their energy have been calculated explicitly: the correspond-
ing results in the cases of heavy and light solitons look rather
different �10�. As was mentioned above, a heavy soliton be-
haves like a classical particle and the total number and en-
ergy of quasiparticles emitted by such a soliton are exponen-
tially small,

N �
2��2

v
�a

v
�9/2

e−�a/v, E � �2v�a

v
�11/2

e−�a/v, a 
 v .

�10�

The behavior of a light soliton more or less mimics that of a
linear wave packet. In the leading approximation in �, the
expressions for the number and energy of quasiparticles
emitted by a light soliton are as follows:

N � 2a��

v
�2

, E �
�2a

2
, a � v . �11�

B. Transformations of the amplitude and velocity
for the fast soliton

By virtue of Eqs. �9�–�11� one can express the energy
change 
Es and the change in the number of quasiparticles,

Ns, via their emitted values. However, the natural kinematic
characteristics of the fast soliton are its amplitude and veloc-
ity. Now by means of the results of the previous section we
can obtain the mapping for the fast soliton amplitude and
velocity during an act of scattering on a single defect. Ac-
cording to Eqs. �4� and �9� the small changes in the soliton
parameters after the scattering are given by �see Ref. �13��


Ns = − N = 2
a, 
Es = − E =
v2

2

a + av
v − 2a2
a .

These relations determine the relative changes in soliton am-
plitude and velocity,


a

a
= −

N

2a
,


v
v

= −
E

av2 +
N

4a
−

aN

v2 , �12�

yielding the following evident velocity and amplitude trans-
formation rules:

v� = v
1 −
E

av2 +
N

4a
�1 −

4a2

v2 �
 , �13�

a� = a�1 −
N

2a
� �14�

�see Ref. �14��. A continuous version of these equations was
obtained in Refs. �13,16�.

In the case of fast heavy soliton, where the inequalities
are �a�v2 and a
v, we can use the explicit expressions for
the number N and the energy E of emitted quasiparticles �10�
mentioned in Sec. II A. Here, the last term in the second of
Eqs. �12� dominates and the transformation relations become

v� = v
1 − 2���

v
�2�a

v
�11/2

e−�a/v
 ,

a� = a
1 − ���

v
�2�a

v
�7/2

e−�a/v
, a 
 v . �15�

The case of light soliton, a�v, is more subtle. In the leading
approximation in a /v from Eqs. �11�, due to the cancellation
of contributions from energy and from number of emitted
quasiparticles, the velocity does not change at all. Therefore,
the next terms in expansions of Eqs. �11� should be taken
into account. Corresponding calculations are performed in
Appendix A, and the eventual results are the following:

N � 2a��

v
�2
1 + O�a4

v4�
 ,

E �
�2a

2

1 −

4a2

3v2 + O�a4

v4�
, a � v . �16�

For velocity and amplitude transformations in the case of
light soliton one obtains

v� = v�1 −
4

3

�2a2

v4 �, a� = a�1 −
�2

v2�, a � v . �17�

Generally, accounting for the results above the mapping rule
can be represented in a unified way,

a� = a�1 − G��,a,v��, v� = v�1 − F��,a,v�� , �18�

where

F��,a,v� = �
a2

v2G��,a,v� , �19�

� = �4

3
, a � v

2, a 
 v ,
� G��,a,v� = ��

�

v
�2

, a � v

���

v
�2�a

v
�7/2

e−�a/v, a 
 v .� �20�
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One can see that in the case of light fast soliton, a�v, the
relative change in the amplitude is determined only by a
small parameter �� /v�2�1, while in the case of a heavy fast
soliton, a
v, this change contains additional exponentially
small factor. Also the velocity change in both cases contains
an additional parameter �a /v�2. Thus, the velocity change
essentially exceeds the amplitude change for a heavy soliton
and is much smaller than the amplitude change for a light
soliton. Let us note that the results very similar to Eqs.
�18�–�20� but for the different model of lengthy segment of
random media were obtained in Ref. �15�.

III. MODEL SYSTEM OF RANDOM SCATTERERS

Let us now introduce disorder into the system and pro-
ceed from a single scatterer �defect� to a system of many
scatterers with random positions and intensities. The NLSE
for the system with many scatterers takes the form

iut + uxx + 2�u�2u = u�
k

�k
�x − xk� ,

k = 1,2,3, . . . , − 	 � x � 	 . �21�

The r.h.s. of Eq. �21� describes the influence of the point
scatterers with random intensities �k, placed at random posi-
tions xk. We will consider the statistical properties of these
quantities separately, starting with the intensities.

A. Random intensities

Let us consider the intensities of the defects as the mutu-
ally independent random variables with the common prob-
ability density function �̃���, and hence the same two first
moments: �̄ and �2��0

2 �the overbar denotes averaging with
the probability density �̃����. We assume here that the distri-
bution of � is not extremely exotic, so that �̄ and �0 are on
the same order of magnitude. The squared intensity of the kth
scatterer can be also characterized by a dimensionless param-
eter,


k =
�k

2

�0
2 − 1.

Evidently, the first moment now 
k=0, and all second mo-
ments are equal to the same value 
k

2�
0
2. The parameter 
0

2

is on the order of �� /�0�2, where � is the width of the prob-
ability density function.

B. Spatial distribution of scatterers

As for the spatial distribution of the defects, we will as-
sume that they are distributed independently and uniformly
within the segment �0,L� with the mean distance l between
the adjacent scatterers. The number n of defects on the seg-
ment �0,L� is random and the probability pn to find exactly n
defects within the segment, is taken to be Poissonian,

pn =
�n

n!
e−�, �

n=0

	

pn = 1, �22�

where �=L / l is the average number of defects on the seg-
ment. Let us consider the probability density to find exactly n

scatterers at the points xk, where we ordered the positions:
1�k�n, 0�xn�xn−1¯ �x2�x1�L. It is convenient to
introduce the new dimensionless variables,

z1 = L−1�L − x1�, zk = L−1�xk−1 − xk�, 2 � k � n

�see the scheme given in Fig. 2�. Now the aforementioned
probability reads as

�n��z�n� = n!��1 − �
k=1

n

zk��
k=1

n

��zk�, �
0

	

�n��z�n��
k=1

n

dzk = 1,

�z�n = �z1,z2, . . . ,zn� .

C. Averages

The dynamical quantities of the problem are described by
various functions which depend on the number n, set of po-
sitions �z�, and intensities �
� of the scatterers. In this section
we will present a simple and universal method of calculating
the arbitrary averages over the intensities and Poisson-
distributed positions of the scatterers. Again, the averaging
with respect to intensities of the scatterers is denoted by an
overbar,

f�n,�z�,�
�� =� �n��
��f�n,�z�,�
��Dn�
� ,

�n��
�� = ��
1� ¯ ��
n�, Dn�
� = d
1 ¯ d
n.

Now, to distinguish between the intensity and position
averaging the symbol, �¯ �n will be used for canonical av-
eraging with respect to positions of the scatterers,

�f�n,�z�,�
���n =� �n��z��f�n,�z�,�
��Dn�z� ,

Dn�z� = dz1 ¯ dzn.

By “canonical” averaging we mean the averaging over all the
realizations where exactly n scatterers occur inside the seg-
ment �0,L�. Using the analogy with the notions of statistical
mechanics we can introduce the grand canonical averaging
over all the realizations having different numbers of scatter-
ers with the weights given by Eq. �22�. The grand canonical
averaging will be denoted by a single pair of angular brack-
ets without the subscript n,

�f�n,�z�,�
��� = �
n

pn�f�n,�z�,�
���n.

Double angular brackets will denote the total averaging,

x3 x2 x1xn-2xn-1xn
L

v1v2vnvn+1

z1z2z3zn-1zn

FIG. 2. The scheme of a classical particle scattering on a disor-
dered segment.
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��f�n,�z�,�
���� = �f�n,�z�,�
��� = �
n

pn�f�n,�z�,�
���n.

�23�

In what follows it is useful to recall the expressions for the
first two moments of the Poissonian distribution,

�n� = �
n=0

	

npn = �, �n2� = �
n=0

	

n2pn = �2 + � .

We can also obtain the first two canonical moments of the
distance between the scatterers,

�zk�n =� z1�n��z��Dn�z� =
1

n + 1
,

�zk
2�n =� z1

2�n��z��Dn�z� =
2

�n + 1��n + 2�
,

�zjzk�n =� z1z2�n��z��Dn�z� =
1

�n + 1��n + 2�
, j � k .

�24�

To obtain the latter quantities we have used the following
trick. One starts with the well-known integral representation
for the � function,

��u� =
1

2�i
�

C

d�

�
ei�u

�the contour C in the complex plane � is the line Im �=−0�.
Then it is possible to interchange the order of the contour
integration and the integration over all zk. Note that this trick
comes handy for calculating arbitrary canonical averages, not
only the first moments.

IV. TRANSMISSION THROUGH A DISORDERED
SEGMENT

A. Dynamics

In this section we consider the transmission time of a
soliton passing through a disordered segment and calculate
the mean value and variance of the transmission time shift. It
is important to mention that in the following analysis we
account for the linear radiation only when applying the trans-
formation formulas �18�. However, we neglect all the sec-
ondary effects relevant to the multiply reflections of the ra-
diation emitted previously by the soliton and the weak
recurrent action of these waives on the overall soliton dy-
namics.

Let v1�0 be the initial velocity of the soliton incident
from the right on the segment �0,L�. In the absence of scat-
terers the transmission time would be T0=L /v1. The inclu-
sion of random scatterers brings about two effects. First, the
effective distance between the adjacent scatterers increases
because of the backward shift of the soliton position. We
denote such a backward position shift at the kth scatterer as
dk. Second, a small deceleration of the soliton occurs after

each act of scattering, which also increases the transmission
time. Let vk�0, with k�n, be the velocity of soliton inci-
dent �from the right� on the kth scatterer and vn+1 be the
velocity of the soliton after passing through the last nth scat-
terer �note that the sequence of velocities �vk� monotonically
decreases, vk+1�vk�. Since the soliton propagates from right
to left �i.e., from +	 to −	�, we assume that vk denotes the
absolute value of the velocity.

The total soliton transmission time Tn through the disor-
dered segment containing n scatterers is

Tn =
L − x1

v1
+

x1 − x2 + d1

v2
+ ¯ +

xn−1 − xn + dn−1

vn
+

xn + dn

vn+1

= T0 + �Tn1 + �Tn2, �25�

where the meaning of the quantities �Tn1 and �Tn2 is the
following. By �Tn1 we have designated the quantity

�Tn1 = �
k=1

n
dk

vk+1
. �26�

So it is the contribution to the transmission time delay re-
lated to the backward position shift. This delay, �Tn1, ac-
cording to Eq. �8� can be expressed as

�Tn1 = �
k=1

n
2�k

vk
2vk+1

. �27�

It follows from Eqs. �15� and �17� that �vk+1−vk� /vk
= ��k /vk�f��k�, so that in the leading approximation in � one
can substitute v1 for all the parameters vk. Then we arrive at
the expression

�Tn1 �
2

v1
3�

k=1

n

�k, �28�

and the final result for the first-order contribution to the de-
lay time is

�Tn1 =
2n�̄

v1
3 . �29�

The last term in the r.h.s. of Eq. �25�, �Tn2, is as follows:

�Tn2 = �
k=1

n

xk� 1

vk+1
−

1

vk
� , �30�

so it describes the delay which occurs due to the soliton
deceleration after each act of scattering. It is written in the
most general form and as such describes the propagation
time of an arbitrary classical particle traversing through a
disordered segment and obeying some given velocity trans-
formation rules. Therefore, the following analysis of this
contribution in the current and following sections is appli-
cable to any classical particle moving according to a given
monotonically decreasing velocity mapping. Note that the
velocity deceleration needs not to be small for the validity of
the method—only the positiveness of the velocity is impor-
tant. We note that the intermediate calculations and final re-
sults also look simpler in the general form rather than in the
form of expansion in the limit of small � /v. The latter limit
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is considered only in Sec. IV C, where we obtain and analyze
the mean value and the variance of the transmission time
delay for a fast soliton.

In the dimensionless variables Eq. �30� can be recast as

�Tn2 = L�
k=1

n � 1

vk+1
−

1

vk
��1 − �

j=1

k

zj� . �31�

The statistical analysis of the shift �Tn2 is more complicated
than that of �Tn1 and the rest of the paper is dedicated to the
former. As we will see below this contribution dominates for
long enough segments with the large average number of scat-
terers. Therefore, in what follows we will omit the subscript
“2” and write simply �Tn implying the quantity �Tn2 unless
specified otherwise.

The corresponding delay depends on the number n of the
scatterers and on their realization, i.e., on the two sets of
parameters �z���z1 , . . . ,zn� and �
���
1 , . . . ,
n� �the latter
enters through the velocities vk�. Indeed according to Eqs.
�18�, the change in velocities is described by the set of re-
current relations,

vk = vk−1�1 − F��k−1,ak−1,vk−1��,

ak = ak−1�1 − G��k−1,ak−1,vk−1�� , �32�

which actually gives vk as a function of an input velocity v1,
input amplitude a1, and fluctuations 
l of intensities �l of all
scatterers l=1,2 , . . . ,k−1 preceding �from the right� the
scatterer with the number k,

vk = ��v1,a1;
1,
2, . . . ,
k−1� . �33�

We emphasize again that, in the case considered, the soliton
behaves as a classical particle that moves with a constant
velocity between the scatterers. The corresponding dimen-
sionless transmission time shift,

�n��z�,�
�� �
�Tn

T0
= �n,1 − �

k=1

n

�n,kzk, �34�

is expressed via the natural dynamic variables,

�n,k =
v1

vn+1
−

v1

vk
� 0, k = 1,2, . . . ,n , �35�

which are nothing else but dimensionless shifts of the inverse
velocities after passing through the last n−k+1 scatterers.
Thus, we see that the fluctuations of intensities and positions
of the scatterers in Eq. �34� are decoupled: accounting for
Eq. �33� the former enter only through the variables �n,k,
while the geometric disorder enters directly through the di-
mensionless distances zk between the adjacent scatterers.

Because the velocities form a monotonically decreasing
sequence, the sequence �n,k also decreases: �n,k+1��n,k.
From Eq. �34� it follows that the shift �n does not exceed the
value �n,1,

0 � �n��z�,�
�� � �n,1.

The maximum of the transmission time occurs in the con-
figuration where all the scatterers are concentrated at the
point of incidence �all xk=L�, so that the soliton always

moves with the minimal velocity vn+1. The minimal shift
equals zero and corresponds to the opposite configuration
where all the scatterers are concentrated at the farther end of
the segment �all xk=0� and the soliton always moves with its
initial �maximal� velocity v1.

B. Mean value and the variance of the transmission time shift

The statistical properties of the dimensionless transmis-
sion time shift, Eq. �34�, are the main subject of our paper.
We will show that within the framework of the classical
“particle” model one can construct a complete statistical de-
scription of the transmission time delay and obtain a general
expression for its probability density function. This problem
will be considered in Sec. V.

However, sometimes for practical applications one may
want to know only the first two moments of the delay. In this
section we will calculate separately the mean shift of the
transmission time and its variance. To calculate the variance,
besides Eq. �34�, we will also need the expression for the
square of the shift in terms of �n,k and zk,

�n
2��z�,�
�� = �n,1

2 − 2�n,1�
k=1

n

�n,kzk + �
k=1

n

�n,k
2 zk

2

+ �
k�m

n

�n,k�n,mzkzm. �36�

The canonical averaging of Eqs. �34� and �36�,

�n
�1� = ��n��z�,�
���n, �n

�2� = ��n
2��z�,�
���n,

by virtue of Eqs. �24� leads to the following general expres-
sions:

�n
�1� = �n,1 −

1

n + 1�
k=1

n

�n,k, �37�

�n
�2� = �n,1

2 −
2

n + 1�
k=1

n

�n,1�n,k +
1

�n + 1��n + 2�

�
�
k=1

n

�n,k
2 + ��

k=1

n

�n,k�2
 . �38�

Eventually the total averages can be obtained by applying the
averaging formula �23�,

��1� = ���n��z�,�
���� = �
n=0

	

pn�n
�1�,

��2� = ���n
2��z�,�
���� = �

n=0

	

pn�n
�2�. �39�

C. Weak scatterers limit

Equations �37� and �38� were obtained for the general
type of velocity mapping,
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v j+1 = v j�1 − F�v j�� . �40�

Here, we consider the weak scattering limit where the param-
eter

� =
v1 − v2

v1
� F�v1� �41�

is small. More precisely, to avoid the error accumulation it
should be much less than inverse number of scatterers on the
segment,

n� � 1. �42�

This equation serves as the definition of the weak scattering
limit. Turning to the specific problem of the soliton scat-
tering, the function F�v1� coincides with the function
F��0 ,a1 ,v1� from Eq. �19�.

In the first order in � the mapping relations defined by
Eqs. �32� and �35� become much simpler. For the fast soliton
they read

vk = v1
1 − ��k − 1 + �
m=1

k−1


m�
 ,

�n,k = ��n − k + 1 + �
m=k

n


m� . �43�

Note that the velocity mapping decouples from the amplitude
mapping in this approximation. The canonical averages can
now be straightforwardly calculated as follows:

�n
�1� = �

n

2
, �n

�2� = �2�n

2
�2
1 +

1

3n
�1 + 4
0

2�
 . �44�

One notes that in the case of large number of scatterers n,
��n−1�1, both dimensionless shift of the transmission time
�n

�1� and its relative standard deviation,

� �n
�2�

��n
�1��2 − 1 =�1 + 4
0

2

3n
, �45�

are small. The smallness of fluctuations is provided by large
number of scatterers n only, while the small deviations from
the unperturbed transmission time require both the weak
strengths of the scatterers � and/or the large initial velocity
v1 �recall that �0 /v1�1 /�n�1�.

After the next averaging over the number of scatterers
�Eq. �39��, we obtain

��1� = �
n=0

	

pn�n
�1� =

��

2
,

��2� = �
n=0

	

pn�n
�2� = � ��

2
�2

+
�2�

3
�1 + 
0

2� . �46�

These results are qualitatively the same as those for the ca-
nonical ensemble �cf. Eqs. �44��. The difference is that here
the average number of scatterers, �=L / l, stands for n from
Eqs. �44�, and some of the numerical coefficients have
changed. Finally, going back to the dimensional variables we

obtain the weak scattering expressions for the mean trans-
mission time shift ��T� and its standard deviation 
T
= ����T�2�− ��T�2�1/2,

��T�n =
n�

2
T0, 
Tn = ��T�n�1 + 4
0

2

3n
, �47�

for the canonical ensemble, and

���T�� =
L�

2l
T0, 
T = ���T���4l�1 + 
0

2�
3L

, �48�

for the grand canonical ensemble. The expressions above
present an improved version of those given in our earlier
paper �26� where the definition of parameter � for the case of
a light soliton was erroneous.

Note that the values of small parameter � for light and
heavy solitons are different. Therefore, within the canonical
ensemble, the mean shift of the transmission time is

��T�n

= �
2

3

nL

v

�0
2

v2�a

v
�2

, light soliton a � v

�
nL

v

�0
2

v2�a

v
�11/2

exp�− �
a

v
� , heavy soliton a 
 v .�

�49�

Here and in the two following Eqs. �50� and �51�, we set for
simplicity a�a1 and v�v1 as the designations for the input
amplitude and velocity values. The results for grand canoni-
cal ensemble are obtained by replacing the number of scat-
terers n with its mean value L / l. The standard deviation is
then found from Eqs. �47� and �48�.

Recall now that the results above are relevant for the
second-order contribution in �, �Tn2 �which is due to the
velocity shifts and deceleration of the soliton�, to the trans-
mission time delay which coexists with the first-order con-
tribution Tn1 �Eq. �29�� �which arises due to the position
shifts�. Each of the two is dominant in its own interval of the
segment lengths. The crossover length Lc is defined by the
expression

Lc ��
1

�0
�v

a
�2

, light soliton a � v

1

�0
�v

a
�11/2

exp��
a

v
� , heavy soliton a 
 v ,�

�50�

For short segments, L�Lc, the transmission time delay is
mostly determined by the first-order contribution due to
backward shift of the soliton center after each scattering �see
Eq. �29��. On the contrary, for the long segments, with L

Lc, the velocity deceleration plays a crucial role and the
delay is described by Eq. �49�. Finally, combining the results
in the two aforementioned regimes we can write the mean
transmission time delay for canonical ensemble as a general
expression,
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��T�n = �max
2n�̄

v3 ,
2nL�0

2

3v3 �a

v
�2
 , light soliton a � v

max
2n�̄

v3 ,
�nL�0

2

v3 �a

v
�11/2

exp�− �
a

v
�
 , heavy soliton a 
 v .� �51�

V. STATISTICAL PROPERTIES OF THE TRANSMISSION
TIME DELAY

A. General formulas

In the previous section the two first moments of the time
shift were calculated both in general situation and in the
weak scatterer approximation. The exact results were appli-
cable to any classical particle evolving according the pre-
scribed velocity mapping between the scatterers. Here, we
perform the analysis a step further and obtain the probability
density function for the soliton transmission shift of a scat-
tered particle.

The latter can be written as a grand canonical averaging
of the corresponding 
 function,

���� = ��
�� − �n��z�,�
����� . �52�

Expressed in terms of canonical averages this probability
density is

���� = �
n=0

	

pn�n��� . �53�

Here, �0���=
���, and for all n�1,

�n��� = ���;n,�
�� , �54�

with the partial probability density

���;n,�
�� = �
„� − �n��z�,�
��…�n.

The probability density will be explicitly calculated in the
following sections.

B. Probability density function

The intensities of the scatterers enter the partial probabil-
ity density, ��� ;n , �
��, through the set of parameters �n,k.
This dependence should be taken into account explicitly only
during the averaging over all realizations of the set �
�. In
what follows we will consider the canonical configurational
averaging �i.e., averaging over the positions of the scatterers,
zk� and omit the symbol �
� in the argument of the partial
probability density.

For n=1 after straightforward integration over z1 one gets

���;1� =
1

�1,1
���1,1 − �� . �55�

For all n�2 we also start with the integration over z1. Due to
the presence of 
 function, the only point contributing to the
integral is

z1 = z1��z�� � 1 −
�

�n,1
−

1

�n,1
�
k=2

n

zk�n,k,

which leads to the result

���;n� =
n!

�n1
�

0

	

¯�
0

	

��z1�z����1 − z1�z� − �
k=2

n

zk��
k=2

n

dzk.

�56�

Using the integral representation for the � function from Sec.
III C, we can rewrite the partial probability density as

���;n� =
n!

�n,1

1

�2�i�2�
C1

d�1

�1
�

C2

d�2

�2
exp
i�1�1 −

�

�n,1
� + i�2

�

�n,1



��
k=2

n ��
0

	

dzk exp	− zk
i�1
�n,k

�n,1
+ i�2�1 −

�n,k

�n,1
�
�� .

All integrals over �z� converge because the sequence �ni decreases. After integration we obtain

���;n� =
n!

�n,1

1

�2�i�2�
C1

d�1

�1
�

C2

d�2

�2
exp
i�1�1 −

�

�n,1
� + i�2

�

�n,1

�

k=2

n 
i�1
�n,k

�n,1
+ i�2�1 −

�n,k

�n,1
�
−1

.
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The next step is the integration over �1 and �2. We start
with integration over �1. The integrand has simple poles at
points

�1 = �2�1 −
�n,1

�n,k
�, k = 1,2, . . . ,n ,

which lie at the upper half plane of �1. If ���n,1, we close
the contour C1 in the lower half plane and the integral is
equal to zero. In the opposite case, ���n,1, the integral is
proportional to the sum of residues in all the poles,

���;n� =
���n,1 − ��n!

2��
k=1

n

�i�n,k�
�
j=1

n 
 �
k=1,k�j

n
�n,j − �n,k

�n,j�n,k

−1�

C2

d�2

��2�n

�exp	 i�2

�n,j
�� − ��n1 − �n,j���, n � 2.

The integral above differs from zero only for �� ��n,1
−�n,j�. In this case one should calculate the contribution
from a single pole �2=0 of the order n. The result is

���;n� = �
j=1

n
f j��;n�

�
k=1,k�j

n

��n,j − �n,k�

, n � 2, �57�

where

f j��;n� = ���n,1 − ����� − ��n,1 − �n,j��

�
n�� − ��n,1 − �n,j��n−1

�n,j
,

�
0

�n,1

f j��;n�d� = �n,j
n−1. �58�

The specific structure of Eq. �57� enables us to represent it
as a ratio of two determinants,

���;n� =
Wn

f ��n�
Wn��n�

, �59�

where Wn��n� is the Vandermonde determinant based on the
powers of �n,k,

Wn��n� = �
�n,1

n−1 �n,2
n−1 . . . �n,n

n−1

�n,1
n−2 �n,2

n−2 . . . �n,n
n−2

. . . . . . . . . . . .

�n,1 �n,2 . . . �n,n

1 1 . . . 1
� , �60�

and Wn
f ��n� is obtained from the expression above by replac-

ing the first line with the corresponding functions fk given by
Eq. �58�,

Wn
f ��n� = �

f1 f2 . . . fn

�n,1
n−2 �n,2

n−2 . . . �n,n
n−2

. . . . . . . . . . . .

�n,1 �n,2 . . . �n,n

1 1 . . . 1
� . �61�

Indeed, ordering the differences in the denominators in the
left-hand side of Eq. �59�, so that all of them are positive,
and summing up all terms, we get the common denominator

�
1�k�j�n

��n,k − �n,j� = Wn��n� ,

while the corresponding numerator is nothing but the expan-
sion of Wn

f ��n� with respect to its first line. Thus, the delay
probability density is defined by Eqs. �53� and �54� with
partial probability density function ��� ;n , �
�� given by Eq.
�57�.

We recall that the scaled transmission time delay � enters
into this formula through the function f �see Eq. �58��, while
the realization of scatterer intensities, �
�, enters through the
variables � which are determined via soliton velocities vk
obeying the velocity transformation �Eq. �33��. Equations
�22� and �58� automatically provide normalization condition
of the probability density of the transmission time shift,

�
0

	

����d� = 1.

In the particular case of identical weak scatterers, 0�� j
=��1, the results obtained look essentially simpler. Indeed,
in this case according to Eq. �43� we get

�n,k = ��n − k + 1� , �62�

and in terms of the scaled time shift, �̃=� /�, the partial prob-
ability density ���̃ ,n�=���� ,n� reads

���;n� = �

��̃� , n = 0

��1 − �̃� , n = 1

��n − �̃��
j=1

n

���̃ − j + 1�P��̃;n, j� , n � 2.�
�63�

Here, all P��̃ ;n , j� are �n−1�-power polynomial functions
of �̃,

P��̃;n, j� =
n

n − j + 1

��̃ − j + 1�n−1

�
k=1,k�j

n

�k − j�

. �64�

All partial probability density functions �PDFs� �Eqs.
�63�� are universal. The fact that we consider either light or
heavy soliton, as well as the dependence on a particular set
of initial parameters a1, v1, and �0, is reflected only in a
particular value of scaling parameter � �Eq. �41��. Therefore,
in the case of identical weak scatterers the canonical PDFs
given by Eqs. �63� not only describe the statistical properties
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of the time shift of an NLSE soliton but are also applicable
to any classical object with the velocity transformation law

v j+1 = v j�1 − �� . �65�

With the growth of the partition number n, the singulari-
ties in PDF become weaker. The zeroth term, n=0, contains
a 
 singularity at the origin; the first term has a jump at �̃
=1. All higher partial PDFs, ���̃ ;n�, with numbers n
=2,3 , . . . are continuous together with their first n−2 deriva-
tives. However, already �n−1�th derivatives have a jump at
the points �̃=1,2 , . . . ,n. For the points �̃=1,2 , . . . ,n−1 this
statement is evident �see Eqs. �63� and �64��. For the point
�̃=n it immediately follows from the representation given by
Eqs. �59� and �60�.

In the general case, performing the summation of canoni-
cal PDFs �Eq. �59�� with the Poissonian weights given by
Eq. �22�, we arrive at the grand canonical PDF, ����, for the
transmission time. In the same approximation of identical
weak scatterers the grand canonical PDF, ���̃� �in scaled
variable �̃�, depends on a sole dimensionless parameter �
=L / l, which is nothing but the mean number of scatterers in
the segment. In Fig. 3 we displayed the truncated grand ca-
nonical PDF,

�̃��̃� = �
n=1

	

pn���̃,n� = ���̃� − e−�
��̃� , �66�

for �=10, i.e., we extracted the singular contribution at the
origin. The truncated �regular� PDF is continuous on a whole
semiaxis �̃�0 except for the point �̃=1. At this point the
PDF has a jump with the magnitude which according to Eq.
�22� is equal to 0.000 454. This small jump is shown in the
inset panel of Fig. 3.

The results above allow one to gather all statistical infor-
mation about the time delay in the disordered segment. One
can verify directly �see Appendix B� that the expression for
PDF given by Eq. �59� leads to the same expressions for the
two first moments of time delay as was given by Eq. �37�
above.

C. Cumulative distribution function

Another important quantity of interest is the cumulative
distribution function, i.e., the probability P��0� that the di-

mensionless transmission time shift, �=�T /T0=v1�T /L,
does not exceed a fixed value �0. This probability,

P��0� � P�� � �0� = �����0 − ���� ,

is equal to

P��0� = p0 + �
n=1

	

pn�n, �67�

where

�n � �n��0,�
�� = ��n��0 − �n��z�,�
����n. �68�

Direct calculations similar to those used in the previous sec-
tion �see Appendix C� lead to the following result:

�n = ���0 − �n,1�
��n,1 − �0�n

�
k=1

n

�n,k

+
Wn

g��n�
Wn��n�

, n � 1, �69�

where

gj��0� = ���0 − ��n,1 − �n,j��
��0 − ��n,1 − �n,j��n

�n,j
. �70�

In Eq. �69� we used the same notation for Wn
g as in Eqs.

�57�–�59�. The scaled transmission time delay �̃ enters into
Eq. �69� both explicitly and through the functions g �Eq.
�70��, while the realization of scatterer intensities �
� enters
by means of variables �, which—in turn—are determined
via the soliton velocities vk obeying the velocity mapping
�Eq. �33��.

Another way of obtaining this probability is the direct
integration of the probability density function,

�n��0� = �
0

�0

�n���d� .

The calculation of this integral is reduced to the �straightfor-
ward� integration of the function f j. The latter is equal to

�
0

�0

f j��;n�d� = ���0 − �n,1��n,j
n−1 + ���n,1 − �0�gj��0� ,

and results in the expression

�n��0� = ���0 − �n,1� + ���n,1 − �0�
Wn

g��n�
Wn��n�

= ���0 − �n,1��1 −
Wn

g��n�
Wn��n�

� +
Wn

g��n�
Wn��n�

, �71�

which at first sight looks different from Eq. �69� obtained
above. However, simple calculations �see Appendix D� con-
firm the equivalence of these two formulas.

VI. CONCLUSION

In this paper we have studied the propagation of the en-
velope NLSE soliton through a segment containing weak
pointlike scatterers. Both the positions of scatterers and their

FIG. 3. Truncated grand canonical PDF for the scaled transmis-
sion time delay. The jump of the PDF at �̃=1 �magnified� is shown
in the inset.
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intensities were assumed to be random and the concentration
of the scatterers was assumed to be small �the mean distance
between the scatterers is much larger than the soliton width�.

For a relatively short segment, the transmission time de-
lay of a fast soliton is mostly determined by the shifts of the
soliton center after each act of scattering. However, for suf-
ficiently long segments the main contribution to the delay
stems from the shifts of the amplitude and velocity after each
scatterer. The crossover lengths separating relatively short
segment from a sufficiently long one have also been obtained
for both cases of light and heavy solitons.

We have developed a method for calculating the statistical
properties of the transmission delay time. This method is
applicable not only to the particular problem of the NLSE
soliton transmission but also to the problem of forward scat-
tering of an arbitrary classical particle provided that the ve-
locity change during an individual act of scattering is known
analytically.

The exact probability density function of the soliton trans-
mission time delay and its two first moments have been
found. In the case of identical scatterers we have obtained
the PDF as a universal function that depends on a sole
parameter—the mean number of scatterers in a segment.
Thus, the first term of the series contains a 
-function singu-
larity, the second has a jump at some point, and each next
term contains a jump in the corresponding higher derivative
�first, second, etc.�. The relative fluctuations of the delay
time become negligibly small when the segment length
grows.
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APPENDIX A: THE NUMBER AND ENERGY OF WAVES
EMITTED BY A LIGHT SOLITON

In the second order of the perturbation theory with respect
to �, the number N of emitted waves and their energy E are
proportional to the following integrals �see Refs. �4,10� and
also �13��:

N =
�

26

�2

v
�

−	

	

F�y,��dy ,

E =
�

28�2v�
−	

	

y2F�y,��dy, � =
2a

v
, �A1�

where F�y ,�� is the renormalized spectral density of emitted
waves,

F�y,�� =
��y − 1�2 + �2�2

cosh2
��y2 − 1 + �2�

4�

 . �A2�

Let us sketch a scheme of a general asymptotic analysis of
the moment integrals of type �A1�,

In = �
−	

	

ynF�y,��dy ,

for a light soliton ��1. In this case the main �power-law�
contribution comes from the two peaks of the spectral den-
sity �A2�, y�= �1+O��2�, but the contribution from the
right peak, y+�1, is generally smaller by a factor of �4. In
the vicinity of each peak, y�, one can make a substitution,

x =
�

4
�y2 + �2 − 1� ,

which is of course defined together with its inverse y��x�.
After the substitution one can write

In = In
+ + In

−, In
� = �

−	

	

f��x,��sech2�x/��dx ,

where

f��x,�� = y�
n �x���y��x� − 1�2 + �2�2�y�� �x�� .

Because the � dependence of the functions f��x ,�� is weak
�algebraic�, while the hyperbolic function is exponentially
localized ���1�, the asymptotic expansion of the above in-
tegral can be performed using an analog of Watson lemma,
i.e., by means of substituting the formal Taylor expansion of
f��x ,�� at x=0 and consequently integrating term by term.
The result then becomes as follows:

In
� � �

k=0

	
f�

�2k��0,��
�2k�! �

−	

	

x2k sech2 x

�
dx = �

k=0

	
f�

�2k��0,��
�2k�!

c2k�
2k+1,

where c0=2 and the coefficients c2k �with k=1,2 , . . .� are
expressed via Bernoulli numbers B2k,

c2k =
22k−1 − 1

22k−2 �2k�B2k� .

Substituting the corresponding even derivatives of functions
f� evaluated at x=0 and developing them in series in powers
of �, we obtain the sought asymptotic expansions for each
moment n of the spectrum. The results for n=0,2 yield for-
mulas �16�.

APPENDIX B: THE CALCULATION OF MOMENTS

Consider first a fixed configuration of the scatterer inten-
sities. The functions f j��� �Eq. �58��, introduced in Sec. V B,
divided by �n,j

n−1 become the probability densities themselves.
The two first moments of � calculated with these probability
densities are

1

�n,j
n−1�

0

	

�f j��;n�d� = �n,1 −
�n,j

n + 1
,
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1

�n,j
n−1�

0

	

�2f j��;n�d� = �n,1
2 −

2�n,1�n,j

n + 1
+

2�n,j
2

�n + 1��n + 2�
.

Canonical averages, �n
�1� and �n

�2�, calculated with the help of
canonical probability density ��� ,n� �see Eq. �57� or Eq.
�59�� are

�n
�1� = �n,1 −

Wn
�1���n�
n + 1

,

�n
�2� = �n,1

2 −
2�n,1Wn

�1���n�
n + 1

+
2Wn

�2���n�
�n + 1��n + 2�

, �B1�

where Wn
�m���n� is obtained from Wn��n��Wn

�0���n� �Eq.
�60�� by replacing all �n,k

n−1 in the upper row with �n,k
n+m−1.

All the generalized Vandermonde determinants Wn
�m���n�

are proportional to the initial one Wn��n� �Eq. �60��. Corre-
sponding coefficients are expressed as symmetric polynomi-
als of �n,k,

Wn
�1���n� = Wn��n��

k=1

n

�n,k,

Wn
�2���n� =

1

2
Wn��n�
��

k=1

n

�n,k�2

− �
1�j�k�n

n

�n,j�n,k
 .

Substituting these expressions into Eqs. �B1� after some
straightforward algebra one arrives exactly to Eqs. �37� ob-
tained in the body of the paper. The additional averaging
over �
� completes the calculation.

APPENDIX C: THE CUMULATIVE
PROBABILITY DISTRIBUTION

The explicit form of the partial probability �n �see Eq.
�68�� is

�n = n!�
0

	

¯�
0

	

Dn��z����1 − �
k=1

	

zk�
����0 − �n,1 + �

k=1

n

�n,kzk� .

With the help of the integral representation of the � function
it can be written as

�n =
n!

�2�i�2�
C1

d�1

�1
ei�1�

C2

d�2

�2
ei�2��0−�n,1�

��
k=1

n �
0

	

eizk��n,k�2−�1�dzk.

To ensure the convergence of all the integrals over zk, we
choose contours Ci �i=1,2�, so that not only Im �i�0 but
also Im��1−�n,k�2��0 for all k�n. Then integration over
all zk leads to the expression

�n =
�− 1�nn!

�2�i�2 �
C2

d�2

�2
ei�2��0−�n,1��

C1

d�1

�1

ei�1

�
k�j

n

��1 − �n,k�2�

.

Closing the contour of integration of the first of the internal
integrals through the upper half plane �1 and taking into
account that all the poles, �1=0 ,�n,1�2 , . . . ,�n,n�2, lie within

the closed contour C1
˜, we obtain

�
C1
˜

d�1

�1

ei�1

�
k�j

n

��1 − �n,k�2�

=
2�i

�2
n ��

j=1

n
1

�n,j
�
k�j

n
ei�2�n,j

�n,j − �n,k
+

�− 1�n

�
k=1

n

�n,k� .

Here, the prime over the first product in parentheses means
that in the pole �where k= j� the second term in the denomi-
nator, �n,k, must be omitted. As results for �n we obtain

�n =
inn!

2�
�

C2

d�2

�2
n+1

�� ei�2��0−�n,1�

�
k=1

n

�n,k

+ �− 1�n�
j=1

n
1

�n,j
�
k�j

n
ei�2��0−�n,1+�n,j�

�n,j − �n,k � .

Now if we close the contour of integration in the upper plane
�2 and take into account the sole pole of the �n+1�th order at
the origin we arrive at

�n = ���0 − �n,1�
��n,1 − �0�n

�
k=1

n

�n,k

+ �
j=1

n
���0 − ��n,1 − �n,j����0 − ��n,1 − �n,j��n

�n,j�
k�j

n

��n,j − �n,k�

,

�C1�

which is equivalent to Eqs. �69� and �70� presented in Sec.
V C.

APPENDIX D: EQUIVALENCE OF THE RESULTS
GIVEN BY EQS. (69) and (71)

To establish the equivalence of these formulas we first
note that the last term in the r.h.s. of Eq. �71� coincides with
that of Eq. �69�. Then the second multiplier in the first term
of Eq. �71� can be presented as

1 −
Wn

g��n�
Wn��n�

=
Wn

h��n�
Wn��n�

, �D1�

where
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hj��0� = �n,j
n−1 −

��0 − ��n,1 − �n,j��n

�n,j
.

The last ratio in Eq. �D1� is a nth power polynomial of �0

that vanishes together with all its first n−1 derivatives at the
point �0=�n,1. Therefore, one gets

Wn
h��n�

Wn��n�
= C��0 − �n,1�n.

To find the constant C, we differentiate this identity n times
and obtain

C = − �
j=1

n
1

�n,j

�
k�j

��n,j − �n,1�
= −

Wn
1/�n,j��n�
Wn��n�

.

Recall that Wn
1/�n,j is defined by Eq. �61�. The numerator in

the last ratio can be easily calculated and equals to

Wn
1/�n,j��n� = �− 1�n−1Wn��n�

�
k=1

n

�n,k

.

This result together with two previous equations establishes
the identity of the two forms of probability �n��0� given by
Eqs. �69� and �71�.
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